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IV. CONCLUSION stabilized cavity and a mechanical compensating tuner. fispecially,

The simple temperature compensated oscillator h% been designed
simplicity, low cost, and compact size are the main advantages of

for use with avalanche, transit time diodes. A ceramic capacitor
employing the ceramic loading on the diode package to compensate
for temperature changes. Moreover, since this technique is com-

which has a negative temperature coefficient is used for a tempera-

ture compensator. Stabilized oscillators are improved considerably
pletely passive, no power is required and the frequency stability

shows the same results as the mechanical tuning compensation.
in performance compared with nonstabilized oscillators of the same

cavity.
The frequency drift in the 1ow-Q cavity having parallel ceramic
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capacitor with the diode package is less than +30 kHz/”C. These
compensation techniques need no additional structures such as a
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Letters

Cornmentson “Rectangular Waveguides with Impedance

Walls”

P. R. McISAAC

In the above paper,l Dybalet al. discuss the propagation charac-
teristics of several rectangular waveguides witlr corrugated walls
and analyze them by using impedance boundaries to simulate the
corrugated walls. One of the waveguides discussed, called an E
guide, has longitudinal corrugations in all four walIs. The authors
claim that this waveguide will support E modes but not H modes.
However, this waveguide hzis an isotropic homogeneous dielectric

surrounded by a conducting boundary which is longitudinally ~mi-
form. Therefore, if the boundary is assumed to be a perfect conductor,

this waveguide must support a complete set of both E and H modes;

the presence of the corrugations cannot change thk conclusion.
In their discussion of the E guide in Section 111)’ the authors state

that the wall impedances Z1 = ZS = O, ZI # 0, Z~ #O (refer to

their paper forthe definitions of these impedances) may be used to
simulate a rectangular waveguide with longitudinally corrugated

walls. They assert as follows.
“The ordinary E modes satisfy the iuipedance boundary con-
ditions for this impedance configuration whllethe Hmodesdo
not?’

They also assert the following.

“Modal solutions other than E modes have field components

that are incompatible with the, impedance boundary conditions.”
No proof is offered for these assertions.

In fact, these assertions are not correct. Consider the following set

of electromagnetic field components in the region: — W/2 < z <
W/2, –H/2 < y < H/2 (for convenience, the origin of the coordi-
nate system is shifted to the center of the waveguide, see Fig. 11).
The notation is essentially that used in the original paper.1

E. = ~ K,HO sin (K.x) cos (Kuy) exp ( – rz)
r2 + kz

Eu=~ KZHO cos (K=x) sin (Kvy) exp ( – rz )
p + ~2

E.=0

Manuscript received November 16, 1973.
The author is with the Department of Electrical Engineering, Cornell

University, Itham, N. Y. 14S50.
1 R. R. Dybal, L. Peters, Jr., and W. H. Peake, IEEE Trans. .Micro-

wave Theory Tech., vol. MTT-19, pp. 2-9, Jan 1971.

H.== K.H, cos (K.x) sin (Kvy) exp (– rz)
rz + ~z

H, = ~ K8H, sin (K=z) eos (Kvy) exp (– ~z)
r2 + ~z

H. = H, sin (K.x) sin (kvy) exp ( – rz).

It is easily verified that these field components satisf y all of Maxwell’s
equations if

r2+&2 –&2-&2=0.

In addition, this set of field components is compatible with the

impedance conditions .at the walls stated by the authors. Assuming
that the nonzero wall ~pedances are reactwe, so that 21 = .jX, and
Z, = jX,, the boundary ~onditions at the walk are

–E. (z, H/2 )
jX1 =

He (z, H/2 ) ‘
at y = H/2

Ev (W/2,y)
jX4 =

H.(W)2,y) ‘
at x = W/2

withanalogous expressions at the other walls.
Inserting the field components given above into these

conditions, one obtains

rz + kz kli xl
(K.H/2) cot (KuH/2 ) = ~ — —

2 20

rj + w kw X4
(K.W/2) cot (K.W/2) = ~ — — .

2 Zo

This pair of equations, together with

r2+~2_&2 _&2=0

“—

boundary

are sufficient to determine the k versus r relationship for given vaues
of H, W, Xl, and X4.

There are an infinite set of solutions to the pair of transcendental

equations just given. In addition to these solutioris, there are three
other infinite sets of solutions that can be obtained, based on

H. = H, sin (K.z) cos (Kvy) exp (– m)

Hz = HO cos (K.z) sin (Kvy) exp ( – rz)

H. = HO cos (K.z) cos (K.y) exp ( – rz )

r&spectively. Therefore, contrary to the assertion made in the paper,l

the impedance wall model used there has an infinite set of H modes.
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The exact location of the cutoff frequencies of these H modes will,
of course, depend on H and W, and on the sign, magnitude, and

frequency dependence of XI and X,. For the case of a symmetric

square waveguide (H = W, X4 = XI), it can be shown that the
cutoff frequency of the lowest H mode is always below that of the

EU mode. At CUM, r = O and k = k, = (K.’ -1- Ki2 )l/’. If X4 = X,
is positive (inductive reactance) the lowest H mode (for which
Ku = K.) is associated with H. = Ho sin (K.z ) sin (Kvy) exp ( – I%)

and has a normalized cutoff frequency

12.w = 2-v’5 cot-’ (lF2xl/zo).

The first solution of this equation is always less than @m, the value

of the normalized cutoff frequency of the Ell mode. If X4 = .X1 is

negative (capacitive reactance ) the lowest H mode (Kv = K.) is
associated with H, = HO cos (IQ) cos (KtiV ) exp ( — rz) and has a
normalized cutoff frequency

kCW = 2@ tan-’ ( –~X1/Zo).

Again, the first solution of thk equation (recall that –X1 is posi-

tive), is always less than @r, the value for the EII mode. Thus, based
on this model, an H mode will always be the dominant mode of the
waveguide, and the EII mode can never be the dominant mode.

In their paper,’ the authors state that in an experimental study

of a squire waveguide with longitudinally corrugated walls, they
found no evidence of any H modes over a two-to-one frequency

range which included the cutoff frequency of the EII mode. They
concluded that the EH mode was the dominant mode of the wave-
guide. The fact that these experimental results conflict with the
results of a correct analysis of the wall impedance model suggests

that a critical reexamination of the whole problem should be under-
taken to resolve this confllct. In view of thk confllct, acceptance of
the authors’ contention that a longitudinally corrugated waveguide
alwavs has a dominant E mode smears inadvisable until an inde-

pend~nt confirmation of their expe~hental results is available.

Comments on “Rectangular Waveguides with Impedance

walls”

M. S. NARASIMHAN AND V. VENKATESWARA RAO

In the above paper,l some comments seem to be necessary on the

impedance compatibility relation

ZIZ8 – Z,za + Z2Z4 = o (1)

where Zl, Z2, Z?, and Z4 have been defined.1 This relation was derived
for obtaining a separable modal solution of fields. Though (1)

appears to be mathematically correct, controversies arise when it is
used for square or rectangular waveguides with all the four walls
corrugated transversely to the direction of propagation. Bryant [1]
in his analysis used a square corrugated waveguide excited in the
TE to z mode of operation and observed that the H-plane walls,

though corrugated, will act as a conducting surface and will not
affect the propagation of TE to z modes. Dybdal et at. have pointed

out that for this particular geometry ( 1 ) is not satisfied and in order

to satisfy (1) the H-plane walls should be conducting. We would

like to point out that it is well known that a separable modal solution

of fields in a waveguide with impedance walls may be expressed in

terms of

E}t”z‘rao’modes’”
Hence the impedances which can influence the propagation of i hese
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modes will be Itilted to three only. This can be explained physically
also by observing that given the polarization for a desired mode of

operation (viz., TE to z or TE to y) only one pair of walls will act

as an anisotropic surface and the other (with corrugations parallel
to the E field ) will act only as a conducting surface [4]. This observa-

tion has been made by Dybdal et al. also.1 Further considering the

modal solution corresponding to the TE to z mode within the corru-
gated guide of this type one observes that Ec = O everywhere,

E, = O, and E, = O on the H walls [2]. Hence Z1 = Zd = Z, = O

and Zz # O, which mtisf y (1). Recently it has been confirmed

experiment ally [4] that a waveguide with all the four-walls corru-
gated transversely gives satisfactory results when it is excited in
TIC to z or TE to y mode. This has also been verified by us by con-

structing a square corrugated guide. Similarly, when the corrugated
guide is excited in the TE to y mode ZI = Zt = Z, = O and Zs # O.
Again (1) is satisfied. For this mode of operation the E-plane

corrugated surface behaves like a conducting surface and the H-plane
wills are anisotropic. From the previous discussions it is obvious

that the corrugated surface can behave as an anisotropic as well as
& isotropic surface, depending upon the choice of the mode of

excitation used. From these observations the authors believe that

the square corrugated guide may be used most efficiently as a wide-

band dual polarized device by a judicious choice of the corrugation
depth.

REFERENCES

[1]

[2]

[3]

[4]

G. H. Bryant, “Propagation in corrugated waveguides, ” Proc. Inst.
Elec. En@., vol. 116,, PP. 203–213, Feb. 1969.
R. l?. Barrington, Ttme Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961, ch. 4, pp. 152–155.
R. B. Dybdal, ‘‘ Waveguide ap lications of impedance surfaces, ”
Ph. D. dissertation, Ohio State l?rriv., Columbus, 196S.
R. Baldwin, R. W. Ashton. and P. A. McInnes. “Horn feeds for
parabolic reflectors
European Microwave Uonf., Brussels, Belgium.

; of gllipti@l cross-sgctjop, ” presented at the 1973

Surface Acoustic Wave Properties of Tantalum Pentoxide

Thin Films on YX Quartz

J. F. WELLER AND T. G. GIALLORENZI

Abstract—The properties of a Rayleigh surface wave propagating

in tantalum oxide thin films on YX quartz are presented. Dispersion

and acoustic wave loss measurements are m’ade using the optical

probe technique.

The propagation characteristics of surface acoustic waves (SAW)

in layered structures differ in several ways from those on a free

surf ace. Rayleigh waves on a free surface are normally dispersionless
and have low losses for frequencies less than 300 MHz ( <1 d5/cm

in YX quartz). The introduction of a thin film causes velocity dis-
persion [1] as well as an increase in the losses of the SAW. The film

can either mass load the surface which slows the SAW or effectively

strengthen the elastic properties of the surface which increases the
velocity. In the latter case the wav”e velocity increases to the point
where the wave becomes leaky, i.e., when it b as a phase velocity

equal to that of the lowest transverse bulk wave; eventually at large

film thicknesses, mass loading will again predominate and the wave

slows down. Finally, the film introduces more 10SS due to increased

scattering caused by grain boundaries and other surface imperf ec-
tions [2] and by step discontinuities as recently discussed by Muna-
singhe and Farnell [3].

The introduction of velocity dispersion resulting from a thin film
overlay !eads to several applications for SAW devices. Mass loading
can be used to produce acoustical waveguiding and provides a
means for steering, focusing, or defocusing the SAW [2]. In a few
cases where the thin film causes an increase in the phase velocity,
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