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1V. CONCLUSION

The simple temperature compensated oscillator has been designed
for use with avalanche transit time diodes. A ceramic ecapacitor
which has a negative temperature coefficient is used for a tempera-
ture compensator. Stabilized oscillators are improved considerably
in performance compared with nonstabilized oscillators of the same
cavity.

The frequency drift in the low-Q cavity having parallel ceramic
capacitor with the diode package is less than +30 kHz/°C. These
compensation techniques neéd no additional structures such as a
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stabilized cdvity and a mechanical compensating tuner. Especially,
simplicity, low cost, and compact size are the main advantages of
employing the ceramic loading on the diode package to compensate
for temperature changes. Moreover, since this technique is com-
pletely passive, no power is required and the frequency stability
shows the same results as the mechanical tuning compensation.
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Comiments on “Rectangular Waveguides with Impedance
Walls”

P. R. McISAAC

In the above paper,! Dybal et al. discuss the propagation charac-
teristics of several rectangular waveguidés with' corrugated walls
and analyze them by using impédance boundaries to simulate the
corrugated walls. One of the Waveguldes discussed, called an F
guide, Has longitudinal corrugations in all four Walls The authors
claim that this waveguide will support £ modes but not H modes.
However, this waveguide has an isotropic homogeneous dielectrie
surrounded by a conducting boundary which is longitudinally uni-
form. Therefore, if the boundary is assumed to be a perfect conductor,
this waveguide must support a compléte set of both ¥ and H modes;
the presence of the corrugations cannot change this conclusion.

In their discussion of the E guide in Section II1,* the authors state
that the wall impedances Z; = Z; = 0, Z; £ 0, Z, 2 0 (refer to
their paper for the definitions of these unpedances) may be used to
simulate a rectangular waveguide with longitudinally corrugated
walls. They assert as follows.

“The ordinary E modes satisfy the impedance boundary con-
ditions for this impedance configuration while the H modes do
not.”’
They also assert the following.
“Modal solutions other than E modes have field components
. that are incompatible with the impedance boundary conditions.”
No proof is offered for these assertions.

In fact, these assertions are not correct. Consider the following set
of electromagnetic field components in the region: —W/2 < z <
W/2, —H/2 <y < H/2 (for convenience, the origin of the coordi-
nate system is shifted to the center of the waveguide, see Fig. 11).
The notation is essentially that used in the original paper.!

E, = = + k2 ——— K, Hysin (K,z) cos (Kyy) exp (—T'z)
E, = I" + = ——— K,H, cos (K,z) sin (K,,y) exp (—TIz)
E,=0
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H, = - + FrgyT ———— K.H, cos (K,z) sin (K,y) exp (—~T%z)

H, = - + FraE ———— K, Hysin (K,z) cos (Kyy) exp (—~ Tz)
H, = Hysin (K,z) sin (Kyy) exp (—Tz).
Tt is easily verified that these field components satisfy all of Maxwell’s
equations if
r+k— K2~ K2 =0.
In addition, this set of field components is compatible with the
impedance conditions at the walls stated by the authors. Assuming

that the nonzero wall ilnpedances are reactive, so that Z; = jX; and
Z, = jX., the boundary conditions at the walls are

—E,(z,H/2)
X = e = H/2
= T G H ) 2) ty =H/
. E,(W/2y)
X, = L7159 tx=W/2
e XU e =W/

with analogous expressions at the other walls.
Inserting the field components given above into these boundary
conditions, one obtains

T2+ k2 kH X
(KyH/2) cot (K,H/2) = Ry Zo
T+ REWX X,
(KW /2) cot (K. W/2) = ) Zo
This pair of equations, together with
T2+ K — —K2=0

are sufficient to determine the k versus T relationship for given vaues
Of H, W, X1, and X4.

There are an infinite set of solutions to the pair of transcendental
equations just given. In addition to these solutions, there are three
other infinite sets of solutions that can be obtained, based on

H, = Hysin (Kx) cos (Kyy) exp (—Tz)
H, = H, cos (Kpx) sin (Kyy) exp (—Tz)
H, = Hycos (K,x) cos (Kyy) exp ( —T%2)

respectively. ‘Therefore, contrary to the assertion made in the paper,!
the impedance wall model used there has an infinite set of H modes.
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The exact location of the cutoff frequencies of these H modes will,
of course, depend on H and W, and on the sign, magnitude, and
frequency dependence of X; and X, For the case of a symmetric
square waveguide (H = W, X, = X;), it can be shown that the
cutoff frequency of the lowest H mode is always below that of the
Eymode. At cutoff, ' = Oand k = k, = (K2 + K22 If X, = X,
is positive (inductive reactance) the lowest H mode (for which
K, = K,) is associated with /1, = Hysin (K,z) sin (K,y) exp (—T%z)
and has a normalized cutoff frequency

kW = 2V2 cott (V2X1/Z,).

The first solution of this equation is always less than V2, the value
of the normalized cutoff frequency of the E; mode. If X; = X, is
negative (capacitive reactance) the lowest H mode (K, = K;) is
associated with H, = H, cos (K,x) cos (K,y) exp (—T%2) and has a
normalized cutoff frequeney .

kW = 2V3 tan—t (—V2X,/Zy).

Again, the first solution of this equation (recall that —X; is posi-
tive), is always less than V2, the valuefor the Fy; mode. Thus, based
on this model, an H mode will always be the dominant mode of the
waveguide, and the E;; mode can never be the dominant mode.

In their paper,! the authors state that in ap experimental study
of a square waveguide with longitudinally corrugated walls, they
found no evidence of any H modes over a two-to-one frequency
range which included the cutoff frequency of the E;; mode. They
concluded that the Ey mode was the dominant mode of the wave-
guide. The fact that these experimental results conflict with the
results of a correct analysis of the wall impedance model suggests
that a critical reexamination of the whole problem should be under-
taken to resolve this conflict. In view of this conflict, acceptance of
the authors’ contention that a longitudinally corrugated waveguide
always has a dominant E mode appears inadvisable until an inde-
pendent confirmation of their experimental results is available.

Comments on “Rectangular Waveguides with Impedance
Walls”

M. S. NARASIMHAN anp V. VENKATESWARA RAO

In the above paper,! some comments seem to be necessary on the
impedance compatibility relation

ZaZs — ZnZis + ZnZs = 0 (1)

where Zi, Z,, Z3, and Z, have been defined.! This relation was derived
for obtaining a separable modal solution of fields. Though (1)
appears to be mathematically correct, controversies arise when it is
used for square or rectangular waveguides with all the four walls
corrugated transversely to the direction of propagation. Bryant [1]
in his analysis used a square corrugated waveguide excited in the
TE to « mode of operation and observed that the H-plane walls,
though corrugated, will act as a conducting surface and will not
affect the propagation of TE to x modes. Dybdal et al. have pointed
out that for this particular geometry (1) is not satisfied and in order
to satisfy (1) the H-plane walls should be conducting. We would
like to point out that it is well known that a separable modal solution
of fields in a waveguide with impedance walls may be expressed in

terms of

TE TE

{ } toz or { } to y modes [3].
T™ ™

Hence the impedances which can influence the propagation of these
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modes will be limited to three only. This can be explained physically
also by observing that given the polarization for a desired mode of
operation (viz., TE to z or TE to y) only one pair of walls will act
as an anisotropic surface and the other (with corrugations parallel
to the F field ) will act only as a conducting surface [47]. This observa-
tion has been made by Dybdal et al. also.! Further considering the
modal solution corresponding to the TE to 2 mode within the corru-
gated guide of this type one observes that K, = 0 everywhere,
E, =0, and E, = 0 on the H walls [2]. Hence Z; = Z; = Z, = 0
and Z, # 0, which satisfy (1). Recently it has been confirmed
experimentally [4] that a waveguide with all the four walls corru-
gated transversely gives satisfactory results when it is excited in
TE to z or TE to y mode. This has also been verified by us by con-
structing a square corrugated guide. Similarly, when the corrugated
guide is excited in the TE to y mode Z; = Z, = Z: = 0 and Z; = 0.
Again (1) is satisfied. For this mode of operation the E-plane
corrugated surface behaves like a conducting surface and the H-plane
walls are anisotropic. From the previous discussions it is obvious
that the corrugated surface can behave as an anisotropic as well as
an isotropic surface, depending upon the choice of the mode of
excitation used. From these observations the authors believe that
the square corrugated guide may be used most efficiently as a wide-
band dual polarized device by a ]udlclous choice of the corrugation
depth.

REFERENCES

{11 G. H. Bryant, ‘“Propagation in corrugated waveguides,”’ Proc. Inst.
Elec Eng., vol. 116, pp. 203—-213, Feb. 1969.

2] R.F. Ha,rrmgton T'ime Harmonic Electromagnetw Fields. New York:
MCGI‘aW-HllI 1961 ch. 4, pp. 152—-15

8] R . Dybdal Wavegulde ap, llcatlons of impedance surfaces,’

Ph. dissertation, Ohio State mv Columbus, 1968.

4] R. Ba,ldwm R. W. Ashton, and P. A. McInnes “Horn feeds for
parabolic reflectors of elhpmcal cross-sectlon, presented at the 1973
European Microwave Conf., Brussels, Belgium.

Surface Acoustic Wave Properties of Tantalum Pentoxide
Thin Films on YX Quartz

J. F. WELLER a~xp T. G. GIALLORENZI

Abstract—The properties of a Rayleigh surface wave propagating
in tantalum oxide thin films on Y X quartz are presented Dispersion
and acoustic wave loss measurements are made using the optical
probe technique.

The propagation characteristics of surface acoustic waves (SAW)
in layered structures differ in several ways from those on a free
surface. Rayleigh waves on a free surface are normally dispersionless
and have low losses for frequencies less than 300 MHz (<1 dB/cm
in YX quartz). The introduction of a thin film causes velocity dis-
persion [1] as well as an increase in the losses of the SAW. The film
can either mass load the surface which slows the SAW or effectively
strengthen the elastic properties of the surface which increases the
velocity. In the latter case the wave velocity increases to the point
where the wave becomes leaky, i.e., when it bas a phase velocity
equal to that of the lowest transverse bulk wave; eventually at large
film thicknesses, mass loading will again predominate and the wave
slows down. Finally, the film introduces more loss due to increased
scattering caused by grain boundaries and other surface imperfec-
tions [2] and by step discontinuities as recently discussed by Muna-~
singhe and Farneil [3].

The introduction of velocity dispersion resulting from a thin film
overlay leads to several applications for SAW devices. Mass loading
can be used to produce acoustical waveguiding and provides a
means for steering, focusing, or defocusing the SAW [27]. In a few
cases where the thin film causes an increase in the phase velocity,
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